Atomic-Scale Spectroscopy of Gated Monolayer MoS2.
نویسندگان
چکیده
The electronic properties of semiconducting monolayer transition-metal dichalcogenides can be tuned by electrostatic gate potentials. Here we report gate-tunable imaging and spectroscopy of monolayer MoS2 by atomic-resolution scanning tunneling microscopy/spectroscopy (STM/STS). Our measurements are performed on large-area samples grown by metal-organic chemical vapor deposition (MOCVD) techniques on a silicon oxide substrate. Topographic measurements of defect density indicate a sample quality comparable to single-crystal MoS2. From gate voltage dependent spectroscopic measurements, we determine that in-gap states exist in or near the MoS2 film at a density of 1.3 × 10(12) eV(-1) cm(-2). By combining the single-particle band gap measured by STS with optical measurements, we estimate an exciton binding energy of 230 meV on this substrate, in qualitative agreement with numerical simulation. Grain boundaries are observed in these polycrystalline samples, which are seen to not have strong electronic signatures in STM imaging.
منابع مشابه
Photoluminescent Arrays of Nanopatterned Monolayer MoS2
Monolayer 2D MoS2 grown by chemical vapor deposition is nanopatterned into nanodots, nanorods, and hexagonal nanomesh using block copolymer (BCP) lithography. The detailed atomic structure and nanoscale geometry of the nanopatterned MoS2 show features down to 4 nm with nonfaceted etching profiles defined by the BCP mask. Atomic resolution annular dark field scanning transmission electron micros...
متن کاملStatistical study of deep submicron dual-gated field-effect transistors on monolayer chemical vapor deposition molybdenum disulfide films.
Monolayer molybdenum disulfide (MoS2) with a direct band gap of 1.8 eV is a promising two-dimensional material with a potential to surpass graphene in next generation nanoelectronic applications. In this Letter, we synthesize monolayer MoS2 on Si/SiO2 substrate via chemical vapor deposition (CVD) method and comprehensively study the device performance based on dual-gated MoS2 field-effect trans...
متن کاملVertical 2D/3D Semiconductor Heterostructures Based on Epitaxial Molybdenum Disulfide and Gallium Nitride.
When designing semiconductor heterostructures, it is expected that epitaxial alignment will facilitate low-defect interfaces and efficient vertical transport. Here, we report lattice-matched epitaxial growth of molybdenum disulfide (MoS2) directly on gallium nitride (GaN), resulting in high-quality, unstrained, single-layer MoS2 with strict registry to the GaN lattice. These results present a p...
متن کاملDefect passivation induced strong photoluminescence enhancement of rhombic monolayer MoS2.
Growing high quality monolayer MoS2 with strong photoluminescence (PL) is essential to produce light-emitting devices on the atomic scale. In this study we show that rhombic monolayer MoS2 with PL intensity 8 times stronger than those of chemical vapour deposition (CVD)-grown triangular and mechanically exfoliated (ME) monolayer MoS2 can be prepared by using CVD. Both Raman and PL measurements ...
متن کاملUniform Growth of Sub-5-Nanometer High-κ Dielectrics on MoS2 Using Plasma-Enhanced Atomic Layer Deposition.
Regardless of the application, MoS2 requires encapsulation or passivation with a high-quality dielectric, whether as an integral aspect of the device (as with top-gated field-effect transistors (FETs)) or for protection from ambient conditions. However, the chemically inert surface of MoS2 prevents uniform growth of a dielectric film using atomic layer deposition (ALD)-the most controlled synth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 16 5 شماره
صفحات -
تاریخ انتشار 2016